Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Nat Protoc ; 18(10): 2998-3049, 2023 10.
Article En | MEDLINE | ID: mdl-37697106

Monoclonal antibodies (mAbs) are commonly used biologic drugs for the treatment of diseases such as rheumatoid arthritis, multiple sclerosis, COVID-19 and various cancers. They are produced in Chinese hamster ovary cell lines and are purified via a number of complex and expensive chromatography-based steps, operated in batch mode, that rely heavily on protein A resin. The major drawback of conventional procedures is the high cost of the adsorption media and the extensive use of chemicals for the regeneration of the chromatographic columns, with an environmental cost. We have shown that conventional protein A chromatography can be replaced with a single crystallization step and gram-scale production can be achieved in continuous flow using the template-assisted membrane crystallization process. The templates are embedded in a membrane (e.g., porous polyvinylidene fluoride with a layer of polymerized polyvinyl alcohol) and serve as nucleants for crystallization. mAbs are flexible proteins that are difficult to crystallize, so it can be challenging to determine the optimal conditions for crystallization. The objective of this protocol is to establish a systematic and flexible approach for the design of a robust, economic and sustainable mAb purification platform to replace at least the protein A affinity stage in traditional chromatography-based purification platforms. The procedure provides details on how to establish the optimal parameters for separation (crystallization conditions, choice of templates, choice of membrane) and advice on analytical and characterization methods.


Antibodies, Monoclonal , COVID-19 , Cricetinae , Animals , Antibodies, Monoclonal/chemistry , Cricetulus , Crystallization/methods , CHO Cells , Workflow
2.
Cryst Growth Des ; 22(6): 3637-3645, 2022 Jun 01.
Article En | MEDLINE | ID: mdl-35673394

We present a method to determine the template crystallization behavior of proteins. This method is a statistical approach that accounts for the stochastic nature of nucleation. It makes use of batch-wise experiments under stirring conditions in volumes smaller than 0.3 mL to save material while mimicking larger-scale processes. To validate our method, it was applied to the crystallization of a monoclonal antibody of pharmaceutical interest, Anti-CD20. First, we determined the Anti-CD20 phase diagram in a PEG-400/Na2SO4/water system using the batch method, as, to date, no such data on Anti-CD20 solubility have been reported. Then, the probability distribution of induction times was determined experimentally, in the presence of various mesoporous silica template particles, and crystallization of Anti-CD20 in the absence of templates was compared to template-assisted crystallization. The probability distribution of induction times is shown to be a suitable method to determine the effect of template particles on protein crystallization. The induction time distribution allows for the determination of two key parameters of nucleation, the nucleation rate and the growth time. This study shows that the use of silica particles leads to faster crystallization and a higher nucleation rate. The template particle characteristics are shown to be critical parameters to efficiently promote protein crystallization.

3.
Faraday Discuss ; 235(0): 109-131, 2022 07 14.
Article En | MEDLINE | ID: mdl-35388815

It is still a challenge to control the formation of particles in industrial crystallization processes. In such processes, new crystals can be generated either by primary or secondary nucleation. While in continuous stirred tank crystallization processes, secondary nucleation is thought to occur due to the shear or attrition of already present larger crystals; in antisolvent crystallization processes, where mixing at the inlets locally causes high supersaturations, primary nucleation is understood to be the main mechanism. We aim to show here that secondary nucleation is the dominant nucleation mechanism, even under conditions that are generally considered to be dominated by primary nucleation mechanisms. Measurements of primary and secondary nucleation rates under similar industrial crystallization conditions of sodium bromate in water, sodium chloride in water, glycine in water and isonicotinamide in ethanol show that the secondary nucleation rate is at least 6 orders of magnitude larger in all these systems. Furthermore, seeded fed-batch and continuous antisolvent crystallizations of sodium bromate under high local supersaturation, seeded with crystals of a specific handedness, result in a close to chirally pure crystalline product with the same handedness. This shows that indeed, enantioselective secondary nucleation is the dominant mechanism in these antisolvent crystallizations. It is even possible to use the enantioselective secondary nucleation mechanism to control the product chirality in such a process, making antisolvent crystallization a viable crystallization-enhanced deracemization technique, having a superior productivity compared to other crystallization-enhanced deracemization methods. Our finding of a dominant secondary nucleation mechanism, rather than primary nucleation, will have a strong impact on nucleation control strategies in industrial crystallization processes.


Ethanol , Water , Crystallization/methods , Water/chemistry
4.
Sci Rep ; 10(1): 8902, 2020 06 01.
Article En | MEDLINE | ID: mdl-32483267

The crystallization of Anti-CD20, a full-length monoclonal antibody, has been studied in the PEG400/Na2SO4/Water system near Liquid-Liquid Phase Separation (LLPS) conditions by both sitting-drop vapour diffusion and batch methods. In order to understand the Anti-CD20 crystallization propensity in the solvent system of different compositions, we investigated some measurable parameters, normally used to assess protein conformational and colloidal stability in solution, with the aim to understand the aggregation mechanism of this complex biomacromolecule. We propose that under crystallization conditions a minor population of specifically aggregated protein molecules are present. While this minor species hardly contributes to the measured average solution behaviour, it induces and promotes crystal formation. The existence of this minor species is the result of the LLPS occurring concomitantly under crystallization conditions.


Antibodies, Monoclonal/chemistry , Antigens, CD20/immunology , Circular Dichroism , Crystallization , Humans , Hydrogen-Ion Concentration , Liquid-Liquid Extraction , Polyethylene Glycols/chemistry , Sulfates/chemistry , Water/chemistry
5.
Acta Crystallogr F Struct Biol Commun ; 73(Pt 10): 574-578, 2017 Oct 01.
Article En | MEDLINE | ID: mdl-28994406

A microfluidic platform was used to address the problems of obtaining diffraction-quality crystals and crystal handling during transfer to the X-ray diffractometer. Crystallization conditions of a protein of pharmaceutical interest were optimized and X-ray data were collected both in situ and ex situ.


Microfluidics/methods , X-Ray Diffraction/methods , Crystallization/instrumentation , Crystallization/methods , Microfluidics/instrumentation , X-Ray Diffraction/instrumentation
...